

RAIRS study of the dipole alignment in spontelectric solid nitrous oxide (N₂O) films: Possible astrophysical implications

Jérôme LASNE

Institute of Chemical Sciences, Heriot-Watt University, Edinburgh (UK)

Outline

What is the spontelectric effect and how is it measured?

Monitoring dipole alignment with RAIRS

Possible astrophysical implications

Spontelectric effect

A. Cassidy et al., ASTROSURF 2011, Edinburgh (UK)

Spontelectric effect

 Solid N₂O films deposited on polycrytalline Au

 Surface potential (V) of the films increases linearly with thickness

- Surface V depends strongly on deposition T
- Heating the films also reduces surface V

 IR spectroscopy in grazing incidence at HWU

- LO-TO splitting increases
 with dipole coupling in solid
 films (i.e. dipole alignment)
- B. Rowland, N.S. Kadagathur and J.P. Devlin, *J. Chem. Phys.* **102**, 13 (1995)

 LO-TO splitting, and therefore dipole coupling decreases in N₂O films with increasing T and more noticeably with deposition T

→ Independent confirmation of the results of surface potential measurements

A long-range effect

Spontelectric effect is retained for N₂O diluted in Xe

 Segregation of N₂O from Xe? → IR spectroscopy • $(N_2O:Xe) = (1:5)$ mixture: N_2O dimers

 No segregation, spontelectric effect is due to a long-range interaction (dipoledipole) and ambient electric field interactions with dipoles

Possible astrophysical implications

- In dense and cold regions of the ISM, CO condenses on top of H₂O ice
- Layered CO-H₂O system with approx. 67 ML of CO (L1544, starless core)
- CO adsorbed with positive end (O atom) pointing towards the vacuum → positively charged surface

A. Cassidy et al., ASTROSURF 2011, Edinburgh (UK)

Possible astrophysical implications

A. Cassidy et al., ASTROSURF 2011, Edinburgh (UK)

- Prediction based on exp.: surf. polarisation ≥ 10⁻⁴ C.m⁻² for CO ice (surf. V ≈ +2 V)
- → equivalent to roughly 100 surf. "charges" per grain (or per m³)

• These positive "charges" are neutralised by e- impacting the ice during its deposition

→ Spontelectric character of CO ice would attract 100 e⁻/grain. e⁻ available on the grains' surface to recombine with molecules/radicals and form anions (e.g. C₄H⁻/C₆H⁻ observed in dense clouds*)

*M.A. Cordiner et al., Astrophys. J. (2013)

Conclusions

 Independent confirmation of the decrease of dipole coupling when increasing (deposition) temperature of the films

- Spontelectric effect is caused by a long-range interaction (dipole-dipole coupling) and the interaction of the ambient electric field with dipoles, and is retained in dilute mixtures
- Possible spontelectric character of CO ice would lead e^- to charge the grains' surface. These e^- are available to recombine with atoms/molecules and form the anions observed in dense clouds (C_4H^-/C_6H^-)

Acknowledgments

Heriot-Watt University

A. Rosu-Finsen
Dr M. Collings
Prof. M. McCoustra

Aarhus University

Dr A. Cassidy

Dr J. Thrower

Dr R. Balog

Dr N. Jones

Prof. D. Field

Sincrotrone Trieste

Dr O. Plekan

Funding

European Community FP7-ITN Marie-Curie Programme (LASSIE project, grant agreement #238258)

Possible astrophysical implications

- Dust grain $r = 0.1 \mu \text{m} \rightarrow \text{surface area} = 1.3 \text{ x}$ 10^{-13} m^2
- 1 ML = 10^{19} molecules.m⁻² \rightarrow 1.3 x 10^6 CO molecules.ML⁻¹ on this grain
- Number of dust grains [K. Acharyya, G.E. Hassel and E. Herbst, Astrophys. J. 732, 73 (2011)] = 1.33 x 10⁻¹² x n_H cm⁻³
- For L1544 (starless core, [A.B. Ford and Y.L. Shirley., *Astrophys. J.* **728**, 144 (2011)]) $n_H = 8 \times 10^5 \text{ cm}^{-3}$ *i.e.* number of dust grains = 1.065 x $10^{-6} \text{ cm}^{-3} = 1.065 \text{ m}^{-3}$
- Number of CO ML = number of CO per m³ all frozen divided by the number to make one ML divided by number of dust grains:
 9 x 10⁷ /(1.257 x 10⁶ x 1.065) = 67 ML of CO

- CO: $\mu = 0.122 D$
- $N_2O: \mu = 0.167 D$